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= Towards Smart and Low-Carbon Electricity Networks

= My Electric Avenue (MEA) Project
- EV Charging Behaviour
- EV Impact Studies (Business As Usual)
- EV Management (ESPRIT-Based Control)
e Field example
e Economic and carbon assessment

" Conclusions
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L= UK Innovation Incentives i

= Regulatory Period 2010-2015: DPCR 5
— Low Carbon Networks Fund (LCNF)

- US$750m+ for DNOs to try out new !‘&I\!FNUH(?
technology, operating and commercial
arrangements

— Tier 1: direct allocation for small projects
— Tier 2: competitive for large projects

= Regulatory Period 2015-2023: RIIO-ED1

- Network Innovation Allowance R=I+I+0

— Tier 2 2 Network Innovation Competition

— ... similar level of funding

Reducing the investment risk of moving towards Smart Grids

Intelligent Control of EVs, May 2019
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My Electric Avenue (MEA)
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——— Old Estimates

DECC EV Uptake Scenarios*

Clusters - Problems /
4 2019: 210k /
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Millions of EVs

2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030

emF\/ Uptake Scenarios Scenario 1 ====E\/ Uptake Scenarios Scenario 2 & 3 ~ ====E\V Uptake Scenarios Scenario 4

* Department of Energy and Climate Change (DECC) - https://www.ofgem.gov.uk/ofgem-publications/56824/ws3-ph2-report.pdf
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Off-LTC

A PR A S A

L —

EV demand happens during peak hours, when people
return home 2> Problems
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Primary Sub
OLTC
Off-LTC

0.8 T3 A b

‘ Widespread EV adoption = Challenges to MV networks
‘ How can we address this?

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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maiinsae: ManNagement of EV Charging Points

Off-LTC

EV impacts could be avoided disconnecting charging
points when needed

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019



B t%;"\_%‘ THE UNIVERSITY OF
/7T [EEE %ﬁ% MELBOURNE
PES

MANCHESTER
Power & Energy Society® Ev C h a I I e n g e S ISL

= EV Clusters

— Can affect the infrastructure close to
customers (LV networks)

- Thermal overloads, voltage drops

E’II}ECTRIG Control of
iVENJE’ EV Charging Points

= EV Management
— Cost-effective infrastructure
— Fair criteria to control EVs

— Customer acceptance

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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Aims:
My
*= To understand charging behaviour of ELECTRIC
(200+) EV users AVENUL
-

" To investigate the impacts of EVs on
9 real LV networks

= To trial a cost-effective and practical ﬁﬁ,h“ A
solution to control EV charging points ¢ T ‘=

(Esprit Technology™) D—0O

DRIVING TOGETHER FOR A CLEANER FUTURE

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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Power & Energy Socity’ Infrastructure Overview

Sensors and
actuators at EV
charging points

Sensors (V, I)
head of feeders

Significant
voltage

Violations in
the thermal

|
Transformer i
|

State of Charge:
Unknown

PLC-like device P ep—— sl =¥ ReiE

at substations Power Line

(control hub) Carrier-based
communications

(bi-directional)

MEA makes the most of available infrastructure

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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Transformer

e —

ROLEC*
charging point
+
EA Technology
Intelligent
Control Box

Real 500 kVA
Transformer

* http://www.rolecserv.com/
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More than 75,000
charging samples

(without control)

ON ¢ [ [ [ [ [ [ [ [ ] [ [ [ [ [ [
. < SOC = 11 Units
SOC =6 Unts—>
4
?;I SOC = 12 Units > <—SOC = 12 Units
>
LLI
2 days connections
OFF! :
oh g 24h

Time of day
Crucial to understand EV users charging behaviour

*https://www.youtube.com/watch?v=0x2bQ4vpLNg

Intelligent Control of EVs, May 2019
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~atmensc: NUMBDEr of Charging Events per Day

B \Veekday
B \eckend

~70% of the EVs are :
charged once a day

Probability (%)
w A
o O
| |

6
Number of Connections
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~70% of the charging events
occur with 3-9 units
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Final Charging Level
70 -
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EV Charging Behaviour
Two charging events N EVs can be connected any time
4 F L L L \ L L L L L -16
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" To understand the behaviour and needs of future LV networks
with high penetrations of EVs

= Stochastic Analysis (Monte Carlo) to cater for uncertainties
- EV charging behaviour, load profile, etc.

" Metrics
- Thermal overloads
— Voltage issues (BS EN 50160)

*https://www.youtube.com/watch?v=0x2bQ4vpLNg

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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Impact Analysis: Input Data

X 10° Low Voltage Network
4,0185
= Real LV networks 4018 o
- - 4,0175
= Realistic domestic load - H
profiles* : | L
4.0165 A S C AP @t
| Weekday/ | G AT
‘ Wwint 4.0155 o4 = ‘.77];7@(‘ 2 #%ﬁu}; g AN
1000s inter St ST e B era
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= H ‘\ ’AH 4.014 \
. H | “‘ | M‘H .
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05 wni J\“ i \ i | M ‘Uu‘ ‘\A | i LL"\/M VAR‘ (m) XlO5
v e A YL, | “J‘\r‘ A‘\ !
Aty ﬁM 10| 9 Real UK LV Networks
24 Hours - 5 min resolution . 11kV/433V three-phase
= Realistic EV load profiles* »  Single-phase customers

« 31 LV feeders
« Main cable: 220-750m

« 2,000+ customers

MEA Project

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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100% PV
Penetration

Transformer
11/0.4 kV

What happens with other penetrations?
Which problem occurs first?
When problems start?

Multi-penetration and
multi-network assessment

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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Example LV Network

160

140 ﬁ_‘_ TX F2

Fe Thermal Limit

Utilization Factor (%)

; om - m= 5 s
0] 10 20 30 40 50 60 70 80 90 100
EV Penetration Level (%0)

Transformer (500 kVA) congestion appears first

Then feeders are affected (highly loaded ones)

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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100 -
g
o 80~
(@
o
3 60 -
O
@)
S 40/
2 B Tx Congestion
& o - I Feeder Congestion 9 LV Networks
_‘é’ 0 Voltage Problem 2,000+ customers
0

EV Penetration Level (%)

Congestion main constraint from 40% of EV penetration

Different LV networks experience different problems

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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= To understand the extent to which a cost-effective and
practical solution can manage EV charging points

= Stochastic Analysis (Monte Carlo) to cater for uncertainties
- EV charging behaviour, load profile, etc.

= Metrics

— Thermal overloads

— Voltage issues (BS EN 50160)
— Customer Impact Level

*https://www.youtube.com/watch?v=0x2bQ4vpLNg

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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PoWer&EnergySociety® Co n ce ptu a I Ap p roa Ch
1. Disconnect EVCPs when 515
problems are detected <
=
. . . @ 1.0
 Following a hierarchical =
(corrective) approach Sos
- Time of
S .
2. Reconnect EVCPs when no 200 | Operation
problems are detected 0 EV switched off —> 1440
. ] ] EV switched on >
 Following a hierarchical ON : .
(preventive) approach = - |
© : :I
3. Suitable selection of the EVs 2 | I
will be managed - : !
OFF - :
0 Time (min) 1440
w/o control - current exceed the thershold (1.0)
= = =w control - current below the thershold (1.0}

MEA progressively trialled the control algorithm

*J. Quirds-Tortds, et al, "Control of EV charging points for thermal and voltage management of LV networks," IEEE Transactions on Power Systems, 2016

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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Tx 500 kVA
w/o control 350 customers

Minimum Voltage
Time of day

1-min control cycle > Problems solved! (in theory)

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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Most EVs are charged

500 before 6am
400
< 300
< 200
100
0
4
3 17:4ah—| | EL23'O4h
S ' i i '
> 2- 19:15h : : :
. ol : : :700:13h
1~ 20:24h ; P!
o | P
6h R M1F151RMM H ? $ %h
|ndiVidl_Ja| EV Demand Expected time: 160 min( 2:40h)
Time of day

Actual time: 389min (6:29h)
Charging Delay: 143.13%

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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Customer Impact Level (CIL)
50 = ]
Half of the EVs are not affected
40 I
S
> 30
;; 30% EVs required less than
< 20 mN twice the original time
S 1 1 1 |
10 | 1
0
0 1 2 3 4 S} 6 7 8 9
Impact Lewel
Customer Impact Level 0o 1 2 3 4
Additional Charging Time (%) 0 1-25 26-50 51-75 76-100
Customer Impact Level 5 6 7 8 9
Additional Charging Time (%) 101-125126-150151-175176-200 > 200

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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Transformer Loading
120
—=—1 min —~—5min —— 10 min — = 30 min

S
5110 -
L% Thermal Limit
= i —1
= = - 2
5100 5 - = = -0
)

90 r r r r r r

40 50 60 70 80 90 100

EV Penetration Level (%)

10-min control cycle
can be as effective

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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Probabilistic Assessment: CIL

Percentage of EV users
w/o delay
CIL=20
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)

EV Penetration Level (%)

Control Cycle

40% 50% 60% 70% 80% 90% 100%
1 min 99 87 72 59 50 44 40
5 min 99 89 77 67 60 56 51
10 min 100 91 80 71 63 59 54
30 min 100 95 85 76 70 64 59

© 2019 L. Ochoa - The University of Melbourne

and it improves
customer acceptance

Intelligent Control of EVs, May 2019
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120
100

7:54h  8:05h
73A S6A

]

53A 70A

 EV Disconnection Infrastructure

Works

* http://myelectricavenue.info/sites/default/files/86002_8_R_SDRC%209.7%20Issue%202.pdf Control May 2015

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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Chnswnck House \ 1l & F 2NN o iy

‘and Gardensyin Trust & e« Ay ‘e ',"\T S ‘ R / &S |

“At the end of the day I can t be fussed, ]USt want to plug it in,
get the lights working so you know it is charging so you know |t
is going to be done by 12, 12:30...."

or whatever | don’t know if it would bother the next person” W‘,—

TR ity St LI g o 1
Impact of the ESPRIT Control
Operation in customers is smaII

o yun some

“At the end of the da

| ->1 hour off foIIowed by 15 min on

* http://myelectricavenue.info/sites/default/files/86002_8_R_SDRC%209.7%20Issue%202.pdf

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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= To understand the economical savings and environmental
benefits of the cost-effective and practical EV management

Realistic and stochastic assessment
— Actual costs, emission factors, etc.

— On 10 LV networks (10.51% of 15030 ENWL LV Networks)
— Compared against traditional reinforcement

= Metrics
— Thermal overloads

— Voltage issues (BS EN 50160)
— Cost (Net Present Value)
— Carbon emissions

*https://www.youtube.com/watch?v=0x2bQ4vpLNg
© 2019 L. Ochoa - The University of Melbourne

Intelligent Control of EVs, May 2019
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meieensar:  ESPRIT Control vs Reinforcement

140

120 = Cost per LV Network

100

o¢]
o

(o)}
o

Cost (1000’s £)

D
o

N
o

o
I

1 2 4 5 6
LV Network

= Esprit 75% mEsprit 100% = Reinfo. 100%

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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mateenmscer ESPRIT Control vs Reinforcement

900

800 +—
Carbon emissions per LV Network

~
o
S

o
o
o

al
o
o

C02 Emissions (tCO2e)

6
LV Network

= Esprit 75% mEsprit 100% = Reinfo. 100%

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019



ESPRIT Control vs Reinforcement

ENWL Region

N
o

Cost (m£)
=
a1

10

300

5 ~
& 250

0 :
Esprit cost ~ Espritcost ~ Esprit cost Reinforcement § 200

50% 75% 100% 100% '3;
U150

o

(=]
9 100

ESPRIT cost - 75% N
o 50

(~3m¥*) ©
0

Esprit emissions Esprit emissions Esprit emissions Reinforcement
50% 75% 100% 100%

ESPRIT is greener
(~70,000 ton)

*For the 10.51% of studied 15030 ENWL LV Networks

© 2019 L. Ochoa - The University of Melbourne Intelligent Control of EVs, May 2019
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*" Trials are crucial to capture the actual EV behaviour and
customer acceptance

— Significant changes from weekday to weekend but no seasonality
- 30% of EV users charge more than once a day

= EV impacts will start at ~40% of penetration (~2030)
— Different networks will present different problems

= ESPRIT-Based EV Management
— Actual trial proves the required infrastructure works
— Practical solutions are needed in industry

— The solution is cheaper and greener than traditional
reinforcement

© 2019 L. Ochoa - The University of Melbourne

Intelligent Control of EVs, May 2019
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e
OW e( : 1 l I( Luis (Nando) Ochoa, and Timothy Butler
&
January 2013 to December 2015 and was subsidized by the Low Carbon Networks Fund along
with partners from industry, DNOs. and academia. The MEA project deployed more than 200
Nissan LEAFs to customers in the United Kingdom to study the driving and charging habits of a

geographically and socioeconomically diverse population. This industrial project also inv ed

Py the technical effects of EVs on European-style low-voltage networks and trialed the direct control
of EV charging points to increase hosting capacity

In this article, we provide details about the MEA trials, including the

main infrastructure adopted. Based on the data analysis and network

studies carried out, we present key findings in terms of 1) the

charging habits of EV users, 2} the impact of EVs on low

Lessons Learned

from One of the
Largest Electric Vehicle
Trials in the World

voltage networks, 3) the effectiveness of the pro-

pacity. Using

posed strategy to increase hosting ¢

what was learned from this large-scale proj-
ect, we then show the additional results
that aid in understanding the extent to
which EVs could provide services to
the electric grid. Finally, we sum-
marize the key lessons learned
from MEA

The My Electric
Avenue Project
The MEA project deployed
more than 200 Nissan
LEAFs with a battery size
of 24 kWh across the Unit-

ed Kingdom (Figure 1),

making it one of the larg
est (if not the largest) EV
trials in the world to date
that examines the challeng-
IN THE COMING YEARS. HUNDREDS OF THOUSANDS

of new electric vehicles (EVs), from plug-in hybrids to fully

es and benefits arising from
the use of this technology at

electric, will hit the roads around the world. adding 1o the cur- home (slow-charging mode

rent EV fleet of more than 2 million, according to the Global at approximately 3.6 kW), The

EV Outlook 2017. The electrification of transportation can bring project’s main objective was Lo

environmental, health, and economic benefits when coupled with trial & solution (known as Esprit)

4 low-carbon

ctricity ation portfolio; however, ensuring that

to mitiga

¢ the impacts that EVs

this transition goes smoothly requires addressing several grid-integra may pose on European-style low-volt

tion challenges re networks (i.c.. multiple low-voltage
To understand the challenges and opportunities that come with the wide- feeders connected to the same distribution
spread adoption of EVs, particularly passenger light-duty vehicles, many distribu- transformer supplying dozens or hundreds of
tion network operators (DNOs) and stakeholders in various countries have carried

out EV trials. One of the largest EV trials in the world was My Electric Avenue (MEA)

customers). To achieve this, the project performed

EV data analysis, modeling, impacts, and management

(www.myelectricavenue.info) in the United Kingdom. Led by EA Technology. the trial ran from studies. MEA was the first project to focus on how to best
manage the local electricity network when a large number of EVs

charge on the same street at the same time
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Control of EV Charging Points for Thermal
and Voltage Management of LV Networks

Jairo Quirds-Tortés, Member, IEEE, Luis F. Ochoa, Senior Member, IEEE, Sahban W.
Alnaser, Student Member, IEEE, and Tim Butler, Student Member, IEEE

Abstrace—High penetrations of domestic electric vehicles (EVs)
in UK. low voltage (LV) networks may result in significant
technical problems. This paper proposes an implementable,
centralized control algorithm, currently being trialed in 9 UK.
residential LV networks, that uses limited information to manage
EV charging poinis to mitigate these technical problems. Two
real UK. LY networks are used to quantify the potential impacts
of different EV penetration levels and to demonstrate the effec-
tiveness of the control algorithm (using different conirol cycles)

ment. Monte Carlo
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Statistical Representation of EV Charging:
Real Data Analysis and Applications

Jairo Quirds-Tortds Alejandro Navarro-Espinosa Luis F. Ochoa Tim Butler
University of Costa Rica University of Chile The University of Melbourne EA Technology Limited
San José, Costa Rica Santiago, Chile Melboume, Australia Chester, United Kingdom
Jairoquirostortos(@ieee.org anavarro@centroenergia.cl luis_ochoa@ieee. org Timothy_ Butler@eatechnology com

Abstract—The electrification of the transport sector is posed to
create challenges but also opportunities for the electricity system.
In this transition, it is crucial to understand the charging behavior
of electric vehicles (EVs) so detailed studies can be carried out.
However, to date, EV data is scarce. This paper proposes the use
of probability density functions based on Gaussian Mixture Mod-
els (GMMs) to represent key charging metrics of EVs. These
GMMs are then combined to produce realistic EV profiles needed
in diverse studies. Real data from 221 EVs part of the largest trial

PSCC 2018

scale trials [4]-[6]. While these models can represent more real-
istically the behavior of EV users, the size of the EV population
used to create the models might limit their representativeness.

Although a number of recent large-scale tnals have been car-
ried out in Europe [7}-{9], the findings in terms of the charging
behavior of EVs, particularly from a perspective useful for net-
work studies, have not been reported. However, considering the
expected adoption of EVs, it is critical to understand the stochas-

of EVs, May 2019
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