

Future Trends in Control and Protection

Daniel Otto - Siemens Energy Management University of Manchester – March 2019

Unrestricted

No. of Carl

www.siemens.com

Overview

- Future Trends in Protection and Control of Wind farms
- Future Trends in Protection and Control of HVDC Links
- Monitoring and Internet of Things (IoT)
- Process Bus Technology

Future Trends of Protection and Control in Wind farms

SIEMENS Ingenuity for life

Page 3

Daniel Otto / EM TS LTS GA S

Changed generation mix by 2020 drives network changes

Projected sources of energy generation in the UK

Source: Department of Energy & Climate Change (November 2015)

BBC

Source: http://www.bbc.co.uk/news/business-35722324

Unrestricted © Siemens AG 2019 08.03.2019

The UK's best resource is offshore

Unrestricted © Siemens AG 2019

Page 5

Offshore Windfarms (HVAC and HVDC)

Unrestricted © Siemens AG 2019 Page 6 08.03.2019

Daniel Otto / EM TS LTS GA S

Offshore Windfarms - AC Connection Close to shore

Offshore Windfarms - AC Connection Long distance from shore

Offshore Windfarms - DC Connection Long distance from shore

Offshore Windfarms - DC Connection Long distance from shore – UK projects

Page 10 08.03.2019

Daniel Otto / EM TS LTS GA S

Reference examples

Unrestricted © Siemens AG 2019 Page 11 08.03.2019

Daniel Otto / EM TS LTS GA S

Protection of Wind Farms

Grid substation vs. Wind Farm substation:

General things to consider:

- Location
- Production cost
- Available space
- Voltage Level
 - Wind farms: 33/66kV main protection is Overcurrent & Earth fault
 - Grid system: 400kV main protection is Differential
- Customer has different requirements

Offshore Transformer Module

Offshore substations are expensive and funding has become difficult. Innovation is key to be able to build new Windfarm access solutions. Siemens has designed a more compact, less expensive solution:

The 'Offshore Transformer Module' or OTM®.

Unrestricted © Siemens AG 2019 Page 13 08.03.2019

Offshore Transformer Module

For the OTM[®], the components are selected to reduce the size of the platform. Furthermore, non-essential devices will be removed or specific functions will be done at the Onshore substation. Examples are: Beds, desks, workshop, etc.

Example: Control & Protection Room: Previous Windfarm: 67 Turbines*6MW (402MW) – 200m² Power capability per m²: 2.01 MW/m²

OTM[®]: 42*7MW (294MW) – 48m² Power capability per m²: 6.12 MW/m²

Similarly, space is also reduced for other parts of the platform.

Offshore Transformer Module

Previously Protection and Control elements were separated, but are combined on the OTM[®] to reduce space requirements.

Source: http://electrical-engineering-portal.com/comparison-of-protection-relay-types

Unrestricted © Siemens AG 2019 Page 15 08.03.2019

Daniel Otto / EM TS LTS GA S

Different Protection approaches

Overcurrent Protection: Grid system: Graded on Distance Zone 3 Wind farms: Graded from turbine upwards

For turbine fault

Different Protection approaches

String Protection:

This does not exist within the Grid system. Ring Topology is used in Medium voltage applications. Originally a ring topology was used, but more wind farms are also planned with branched strings.

Daniel Otto / EM TS LTS GA S

Control System vs. Control Centre

Control Centre:

- Can initiate commands and receives indications
- No automation
- Commands can be send regardless of who is in control

Control System:

- Can initiate commands and received indications
- Automation for specific applications
- Command arbitration is done here

Control System vs. Control Centre

Unrestricted © Siemens AG 2019 Page 19 08.03.2019

Future Trends of Protection and Control of HVDC substations

Unrestricted © Siemens AG 2019 Page 20 08.03.2019

Hypothesis for number and voltage of export cables

33kV, 132kV or 220kV? AC or DC?

Cable installation costs dominate 1 larger cheaper than 2 smaller cables But capacity vs. cross section reduces with size

220kV wins simple cost benefit*

- Limited choice of manufacturer
- Cable and joints not yet proven
- Many more factors

132kV chosen on many older UK projects

- London Array long cable route
- reverted to 150kV

*CBA for SQSS

http://www.berr.gov.uk/files/file36032.pdf

HV DC transmission

For distances >120km DC can become a better option

- Fewer cables
- Lower losses
- More controllable

Negligible losses in the DC circuit Conversion losses per station:

- 0.75% CSC
- 1% MMC VSC

Topsides ≈10,000 tonnes Crane limited to 11,000 tonnes Heavier platforms needs to be self lifting

The EU and North African Supergrid

Source: https://www.commonspace.scot/articles/2019/five-reasons-you-should-care-about-european-north-sea-super-grid

Unrestricted © Siemens AG 2019 08.03.2019

Current Developments in the North Sea SylWin1 BorWin2 BorWin3 HelWin2 BorWin1 HelWin1 BorWin4 alpha ventus DolWin1 DolWin2 DolWin3 Nordergründe Riffgat **KS Büttel UW Hagermarsch** 0 **UW** Inhausen UW Emden Borssum KS Emden/Ost KS Diele KS Dörpen West

Source: http://www.modernpowersystems.com/features/featurenavigating-the-north-sea-learning-curve-4359059/featurenavigating-the-north-sea-learning-curve-4359059-458379.html

Unrestricted © Siemens AG 2019

Page 24 08.03.2019

SIEMENS

Ingenuity for life

Monopolar and Bipolar HVDC

One HV line for DC Current transmission

 Return path optionally via ground (in most cases not allowed anymore) or via return conductor

Lower rating

Monopolar and Bipolar HVDC

- Two DC lines with +/- DC voltage level for transmission
- Higher Rating
- Can be used as monopolar in case of a fault on the converters or on the transmission line

Monopolar and Bipolar HVDC

SIEMENS Ingenuity for life

Normal Bipolar operation:

Monopolar operation in case of a fault in one DC line

Monopolar operation in case of a fault in one of the converters

Classical HVDC Protection (Current Source Converter)

HVDC Classic Converter Station

Neptune Project, New Jersey

Unrestricted	© Siemens AG 2019
Page 29	08.03.2019

HVDC Classic Converter Station

SIEMENS Ingenuity for life

Source: http://virtual.hunterston.eu/industry/converter.htm

Unrestricted © Siemens AG 2019

Classical HVDC Protection

- Classical HVDC is Thyristor based
- 3 Winding Transformer needs to be used in order to achieve 30 degree phase shift.
- Reactive Power compensation and Harmonic Filters are required to confirm with Grid code.
- Protection for the above is split into different Zones
- Zones are build up from standard Protection Zone elements

HVDC Protection Systems (AC side)

Unrestricted © Siemens AG 2019 Page 32 08.03.2019

DC Converter Measurement Locations

DC Measurement

New Technology in HVDC (Voltage Source Converter)

SIEMENS

Ingenuity for life

VSC HVDC converter station example

Unrestricted © Siemens AG 2019 Page 36 08.03.2019

Daniel Otto / EM TS LTS GA S

Advantages of VSC HVDC

- Multi-terminal capable
- No filters are required to comply with Grid codes
- Only normal double wound transformer is required
- Less Space required on the substation
- Independent P and Q control can be achieved

However:

- Lower Rating than CSC
 - Western Link (CSC) rated at 2.2GW
 - Most UK VSC projects are around 1.4MW
- Switch-on resistor is required to start the converter
- Balancing Point needs to be established

Control System of HVDC

- Grid System elements :
 - Control & Protection systems are separated
- HVDC system:
 - Control & Protection are integrated into one system

Every year, more and more assets are connected.

Every piece of equipment has a wealth of data, which can be used to analyse its behaviour. This data can be used to create productive business results.

MindApps

- Use apps from Siemens, partners or develop own apps
- Gain asset transparency and analytical insights
- Subscription based pricing model

MindSphere

- Open interface for development of customer specific apps
- Various cloud infrastructures: SAP, AtoS, Microsoft Azure offered as public, private or on-premise (planned)

MindConnect

- Open standards for connectivity, e.g., OPC UA
- Plug & play connection of Siemens and 3rd party products
- Secure and encrypted data communication

Due to this change, there is a possibility for many other organisations to create growth within the Electricity Industry.

SIEMENS Ingenuity for life

Examples:

Major soft drink producer

Machine monitoring

- Affordable IoT solution for predictive maintenance of 150 motors
- Increased asset uptime through accurate failure prediction
- Global accessibility of data

Major OEM for Honing Machines

Machine uptime and quality

- The honing stones must be replaced before either critical threshold values
- Reduced downtime and guaranteed quality
- Differentiated service offerings & revenue stream for OEM

Major international airport

Failure prediction for baggage carts

- Identification of all potential failures in baggage trail
- On-time maintenance of defective baggage carts
- Visualization of system failures

Also, in the Electrical Industry, the data can be used to give indication for required maintenance or replacement:

A few examples:

- Equipment Condition Monitoring for example circuit breaker tripping performance
- GIS Gas Density Monitoring identify leaks early
- Battery Monitoring maintain or replace before batteries won't support the load
- Motor performance Monitoring maintain or replace before equipment fails
- And much, much more....

In a lot of cases, the data is also combined with environmental aspects (location, weather, etc), which is not always is taken into consideration.

A live demo can be viewed here: <u>https://siemens.mindsphere.io/live-demo</u>

Unrestricted © Siemens AG 2019

Benefits of the Process Bus Technology:

- Standardised communication interface on Ethernet
- Enables the use of Non Conventional Instrument transformers (NCITs)
- Save copper cables and other hardware structures
- Saves Engineering efforts
- Eases installation, maintenance and replacement
- It is the basis for intelligent switchgear and extended monitoring functions

Merging Unit (analogue): Converts analogue voltages and currents into IEC 61850 compliant data stream.

Protection Devices:

Uses the current and voltage information from the data stream to evaluate the current state of the system. Send trip signals to Digital Merging Units

Merging Unit (digital):

Receives and transmits information from/to the protection device. Sends commands to the switchgear (including tripping)

Non-conventional Instrument transformers

Test set for Rogowski coil and RCVDs

Unrestricted © Siemens AG 2019 Page 49 08.03.2019

Daniel Otto / EM TS LTS GA S

Non-conventional Instrument transformers

Characteristic	Inductive CT	Rogowski Coil
Saturation	Saturates with several times rated current	Does not saturate
Size and weight	Large and Heavy	Small and Light
Remanence	Remanence is possible	No remanence (no iron core)
Protection Schemes	Several CT cores required for different applications	One Rogowski coil can be used for different schemes
Safety	Open Secondary can generate dangerous voltages	Safe – open secondary voltage very small

Unrestricted © Siemens AG 2019

Research and Development Project "Intelligent Switchgear" Station Nehden

RWE Westfalen-Weser-Ems Netzservice 5.5.2008 Daniel Otto / EM TS LTS GA S

)

Current development status:

- Trials are in place all over the world to evaluate the technology
- Standards are defined to enable interoperability between manufacturers
- Trials have been done at the University of Manchester and around the world for Interoperability between different manufacturers
- Customer specifications are being developed to enable the use of Process Bus Technology
- Products are being developed and are also available on the market
- The idea of Process Bus Technology is already in use (GOOSE Tripping, even though it uses standard IEC 61850)

RSTP vs. Seamless Redundancy

RSTP Redundancy:

- Only one link is active
- Needs time to reconfigure
- Messages are lost and need to be resend (not deterministic)

For Process Bus this is not good enough. For this applications seamless redundancy is necessary:

- Both Links are active all the time
- No reconfiguration time
- No messages are lost

There are 2 main seamless redundancy protocols:

- PRP Parallel Redundancy Protocol
- HSR High-availability Seamless Redundancy Protocol

Following slide shows both concepts working in parallel

Unrestricted © Siemens AG 2019 Page 55 08.03.2019

PRP/HSR in Parallel and Ring Redundancy

Process Bus

Future Prospect for Process Bus Technology:

- NCITs will be used to connect to the Merging Units
- Process Bus Technology will protect circuits, but localised in Control & Protection room (blockhouse)
- Merging Unit will be located outside in the switchyard or even integrated into the switchgear to achieve its full potential

Process Bus

Future Prospect for Process Bus Technology – Centralise Protection: Instead of having protection devices on a per bay basis, Process Bus Communication enables the use of a centralised protection system

Thank you.

Daniel Otto Tendering Engineer Energy Management

Mobile: +44 7921 246414 Email: <u>daniel.otto@siemens.com</u>

www.siemens.com/gridaccess www.siemens.com/hvdc www.siemens.com/processbus

Unrestricted © Siemens AG 2019Page 5908.03.2019