Stochastic wind speed modelling including daily wind patterns based on real data

Loukatou: angeliki.loukatou@manchester.ac.uk Supervisors: S. Howell, P. Johnson, P. Duck – Advisor: M. Barnes School of Mathematics, Faculty of Science and Engineering, Centre for Doctoral Training in Power Networks, www.power-networks-cdt.manchester.ac.uk

1. Introduction – Motivation

- UK has ambitious renewable energy targets $(2020) \rightarrow$ increased wind penetration \rightarrow system operation and balancing problems \rightarrow need for more detailed wind modelling [1]
- Wind speed has stochastic behaviour \rightarrow driven by natural sources [1,2]
- ♦ **Cyclicality** over period of 24 hours (**diurnal cycle**) and longer
- ♦ **Noisy short-term** stochastic variations (not analytically tractable)
- How to model this? \rightarrow Stochastic Differential Equations (SDEs) \rightarrow Existing approaches [2-4] ♦ Do not account for **daily cycles**
- ♦ Lack of **empirical fitting** and validation of the model's parameters
- **Weibull** distribution cannot capture **daily cycles and temporal correlation**

Empirical Validation of SDE Model

♦ Calculate **logarithms** of initial wind speed time series

 \diamond Remove the average summer daily cycle presented in Fig. 5 [1,3-5]

 \diamond Estimate κ and σ with maximum likelihood estimators [3,5] (Table 2)

 \diamond **Residual analysis** \rightarrow residuals resemble white noise [1,3] (Figs 6-7)

Table 2: Parameter values for the stochastic component of the wind speed model

Parameter	Values	Standard	error

•	0.0368	0.0041	
	0.0010	0 00000	

2. The SDE model

Wind speed modelled with Ornstein-Uhlenbeck Geometric Brownian Motion in continuous time [2]

$$lnX(t) = Y(t) + f(t)$$

$$dY(t) = -\kappa Y(t) dt + \sigma dW$$
(2)

- f(t) the **deterministic diurnal** cycle based on log-wind speed data
- Y(t) the mean-reverting stochastic component of Ornstein-Uhlenbeck type
- κ , σ , dW the mean reversion parameter, volatility and Wiener process
- Probability Density Function (PDF) of wind speed \rightarrow log-normal PDF
- PDF of wind power **not Gaussian** \rightarrow wind power **cannot** be modelled with an **O-U GBM model**
- Annual cycle neglected \rightarrow short term decisions needed in power system operation and balancing

3. Parametric estimation

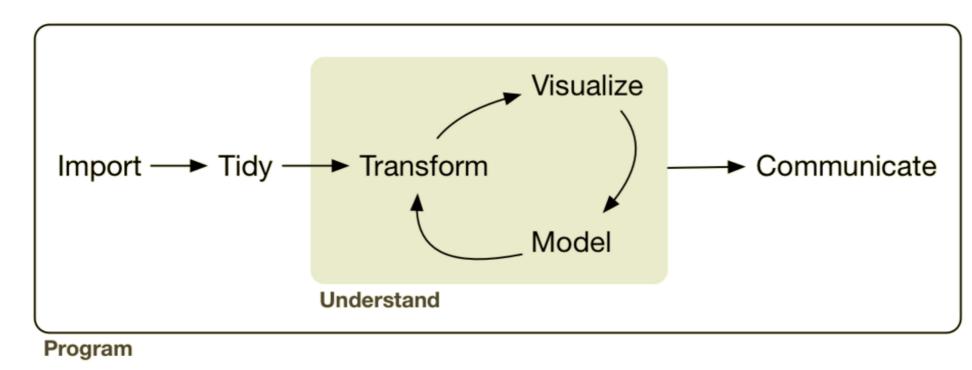


Figure 1: General steps of analysing the wind speed dataset [5]

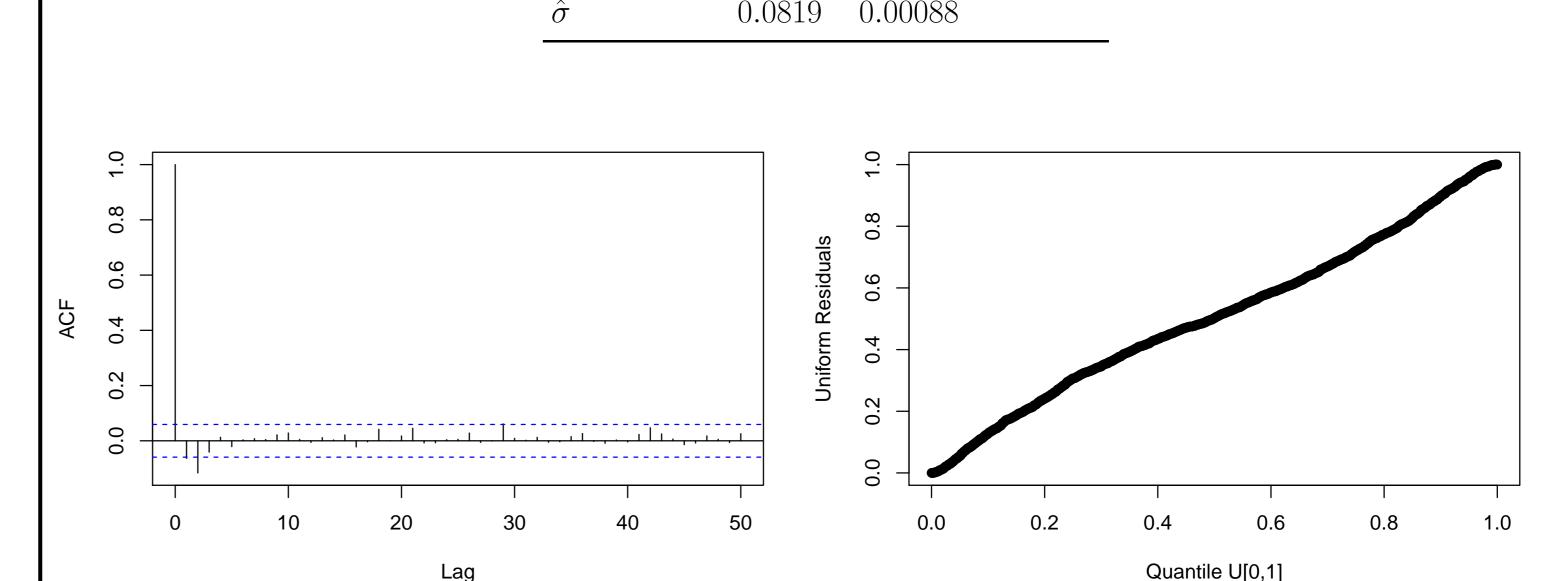


Figure 6: ACF of the residuals for the de-trended log-wind speed data for the Spanish wind farm (95% confidence interval)

Quantile U[0,1] **Figure 7:** Uniform residues quantile – quantile graph of the de-trended log-wind speed data

4. Communicate Results

\diamond SDE of Eqs (1)-(2) solved numerically with **Milstein scheme**

 \diamond Parameters used: $\kappa = 0.0368$, $\sigma = 0.0819$, n = 4320, $\delta t = 0.167$, fitted average summer daily cycle, f(t), first observation of the initial wind speed time series used as starting point, random variable drawn from the N(0,1) distribution multiplied by $\sqrt{\delta t}$

o.

Prot

Import data into a data frame \rightarrow Real data used - collected from Spanish wind farm [6] \diamond 10-minute resolution

♦ summer season (June-July-August) of years 2010-2016 selected to compute **average summer daily cycle** ♦ specific month of June 2016 selected for fitting the **stochastic component**

Tidy the dataset \rightarrow Columns: variables (date, wind speed, wind power) - Rows: observations [5]

♦ Fix date to specific format **year-month-date**

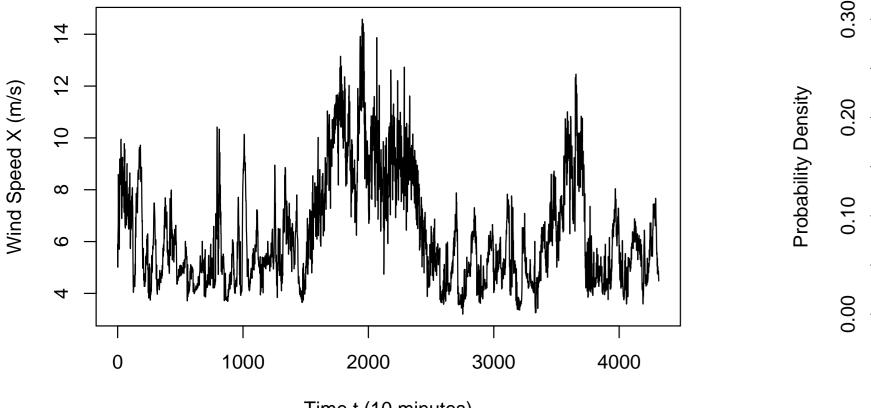
♦ Change wind speed observations **from factor type to numeric**

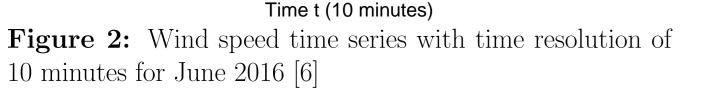
♦ No **missing values** observed – remove **outliers** (4 very high unusual wind speed values)

Transform – Visualise

Import - Tidv

Initial wind speed time series – PDF (Figs 2-3) – summary statistics (Table 1)





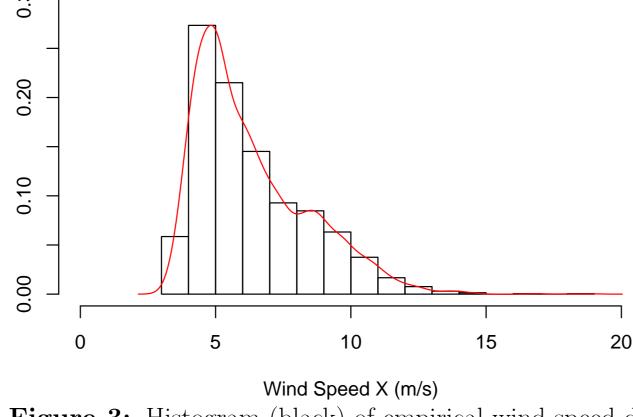
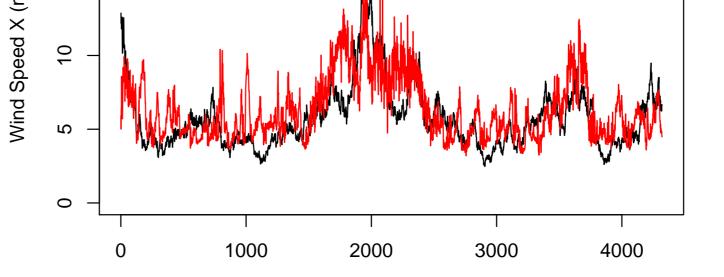


Figure 3: Histogram (black) of empirical wind speed data and kernel PDF (red) of wind speed for June 2016 [6]

Table 1: Main statistical characteristics of the wind speed time series for June 2016 (max, min, mean and sd in m/s)



Time t (10 minutes) Figure 8: Simulated (black) and empirical (red) wind speed time series for the 10-minute data for June 2016

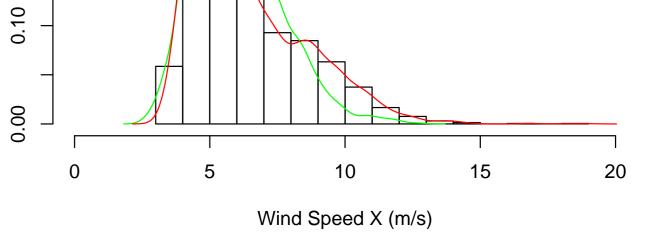


Figure 9: Empirical (red) and simulated (green) PDFs with histogram (black) for the 10-minute data for June 2016

- 1. Simulated wind speed follows empirical time series closely they change similarly over time and remain within the same limits as also shown from histogram and PDFs (Figs 8-9)
- 2. Correlation between empirical and simulated wind speed: 0.61, Root Mean Square Error between PDFs: 0.073
- 3. Mean-reverting nature of the model \rightarrow simulated wind speed starts at higher value than the long-term mean but it reverts back to the mean daily cycle

Conclusion 5.

♦ Proposed model **fitted and validated with real data**

♦ Proposed model adequately represents wind speed variations in continuous time ♦ Proposed model easily **adjusted to other time resolution** from that of the given data ♦ Proposed model can be used for various applications – **optimal energy storage or system balancing** Future work:

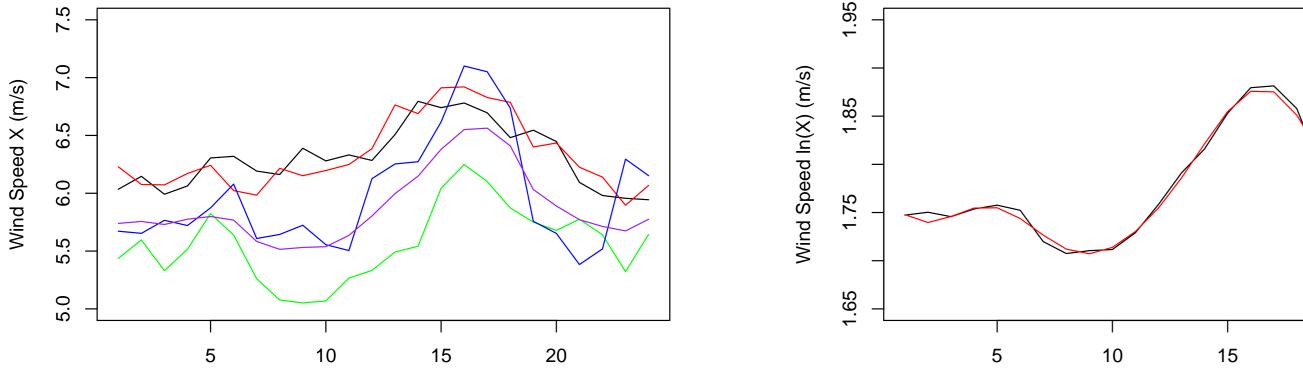
 \diamond **Different data sets** \rightarrow different daily cycles and examine their impact on the stochastic wind model

 \diamond Wind power curve \rightarrow compute and analyse wind power output

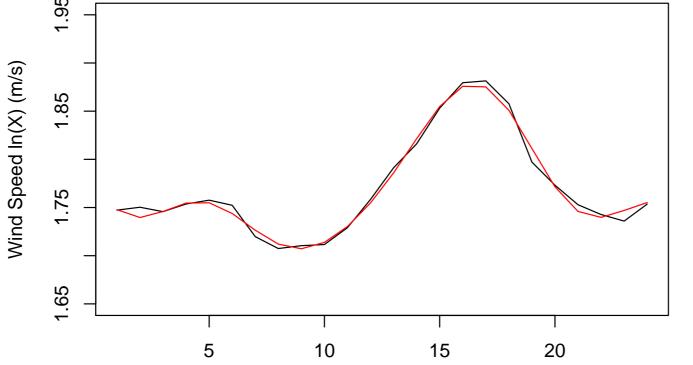
Time X-min X-max X-mean X-sd

10-min 3.2 18.986.34 2.1

Computed daily averages \rightarrow existing daily pattern with higher wind speeds during the evening (Fig. 4) Average summer daily cycle \rightarrow ensure adequate accuracy (fitted with Fourier series, Fig. 5)



Time t (10 minutes) Figure 4: Average daily cycles: June 2014 (blue), June 2015 (green), June 2016 (red), June 2017 (black), average daily cycle for the whole summer season (purple) [6]



Time t (hours) **Figure 5:** Average summer daily wind speed profile (black) and fitted daily cycle (red) with a Fourier series model (with frequencies of w, 2w and 3w) for log-wind speed [6]

6. References

- 1. C. Hill, D. McMillan, R. Bell, and D. Infield, "Application of auto-regressive models to uk wind speed data for power system" impact studies," IEEE Transactions on Sustainable Energy, vol. 3, no. 1, pp. 134141, Jan. 2012.
- 2. P.Johnson, S. Howell and P. Duck, "PDE methods for stochastic dynamic optimisation: an application to wind power generation with energy storage", *Philosophical Transactions A*, vol. 375, no. 2100, Jul. 2017.
- 3. H. Verdejo, A. Awerkin, E. Saavedra, W. kliemann, L. Vargas, "Stochastic modeling to represent wind power generation and demand in electric power system based on real data," Applied Energy, vol. 173, pp. 283-295, Apr. 2016.
- 4. O. Magnus, P. Magnus, S. Lennart, "Modeling real-time balancing power demands in wind power systems using stochastic differential equations," Electric Power Systems Research, vol. 80, pp. 966-974, Feb. 2010.

5. W. Hadley and G. Grolemund, "R for data science," 2016.

6. "Real-time Wind Data," Sotavento 2017, [online], Available: http://www.sotaventogalicia.com/en/real-time-data/ historical, [Accessed: 23 Oct-2017].

The author gratefully acknowledges financial support from EPSRC (EP/L016141/1) through the Power Networks Centre for Doctoral Training. Further, the author thanks the supervisory team and the advisor for all the help and support.