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1. Introduction − Motivation

•UK has ambitious renewable energy targets (2020) → increased wind penetration → system
operation and balancing problems → need for more detailed wind modelling [1]

•Wind speed has stochastic behaviour → driven by natural sources [1,2]

�Cyclicality over period of 24 hours (diurnal cycle) and longer

�Noisy short-term stochastic variations (not analytically tractable)

•How to model this? → Stochastic Differential Equations (SDEs) → Existing approaches [2-4]

�Do not account for daily cycles

� Lack of empirical fitting and validation of the model’s parameters

�Weibull distribution cannot capture daily cycles and temporal correlation

2. The SDE model

Wind speed modelled with Ornstein-Uhlenbeck Geometric Brownian Motion in continuous time [2]

lnX(t) = Y (t) + f (t) (1)

dY (t) = −κ Y (t) dt + σ dW (2)

• f (t) the deterministic diurnal cycle based on log-wind speed data

• Y (t) the mean-reverting stochastic component of Ornstein-Uhlenbeck type

• κ, σ, dW the mean reversion parameter, volatility and Wiener process

- Probability Density Function (PDF) of wind speed → log-normal PDF
- PDF of wind power not Gaussian → wind power cannot be modelled with an O-U GBM model
- Annual cycle neglected → short term decisions needed in power system operation and balancing

3. Parametric estimation

Figure 1: General steps of analysing the wind speed dataset [5]

Import − Tidy

Import data into a data frame → Real data used − collected from Spanish wind farm [6]

� 10-minute resolution

� summer season (June-July-August) of years 2010-2016 selected to compute average summer daily cycle

� specific month of June 2016 selected for fitting the stochastic component

Tidy the dataset → Columns: variables (date, wind speed, wind power) − Rows: observations [5]

� Fix date to specific format year-month-date

� Change wind speed observations from factor type to numeric

�No missing values observed − remove outliers (4 very high unusual wind speed values)

Transform − Visualise

Initial wind speed time series − PDF (Figs 2-3) − summary statistics (Table 1)
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Figure 2: Wind speed time series with time resolution of
10 minutes for June 2016 [6]
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Figure 3: Histogram (black) of empirical wind speed data
and kernel PDF (red) of wind speed for June 2016 [6]

Table 1: Main statistical characteristics of the wind speed time series for June 2016 (max, min, mean and sd in m/s)

Time X-min X-max X-mean X-sd

10-min 3.2 18.98 6.34 2.1

Computed daily averages → existing daily pattern with higher wind speeds during the evening (Fig. 4)
Average summer daily cycle → ensure adequate accuracy (fitted with Fourier series, Fig. 5)
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Figure 4: Average daily cycles: June 2014 (blue), June
2015 (green), June 2016 (red), June 2017 (black), average
daily cycle for the whole summer season (purple) [6]
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Figure 5: Average summer daily wind speed profile (black)
and fitted daily cycle (red) with a Fourier series model (with
frequencies of w, 2w and 3w) for log-wind speed [6]

Empirical Validation of SDE Model

� Calculate logarithms of initial wind speed time series

�Remove the average summer daily cycle presented in Fig. 5 [1,3-5]

� Estimate κ and σ with maximum likelihood estimators [3,5] (Table 2)

�Residual analysis → residuals resemble white noise [1,3] (Figs 6-7)

Table 2: Parameter values for the stochastic component of the wind speed model

Parameter Values Standard error

κ̂ 0.0368 0.0041
σ̂ 0.0819 0.00088
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Figure 6: ACF of the residuals for the de-trended log-wind
speed data for the Spanish wind farm (95% confidence interval)
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Figure 7: Uniform residues quantile − quantile graph of the
de-trended log-wind speed data

4. Communicate Results

� SDE of Eqs (1)-(2) solved numerically with Milstein scheme

�Parameters used: κ = 0.0368, σ = 0.0819, n = 4320, δt = 0.167, fitted average summer daily cycle,
f (t), first observation of the initial wind speed time series used as starting point, random variable drawn
from the N(0, 1) distribution multiplied by

√
δt
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Figure 8: Simulated (black) and empirical (red) wind speed
time series for the 10-minute data for June 2016
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Figure 9: Empirical (red) and simulated (green) PDFs with
histogram (black) for the 10-minute data for June 2016

1. Simulated wind speed follows empirical time series closely − they change similarly over time and
remain within the same limits as also shown from histogram and PDFs (Figs 8-9)

2. Correlation between empirical and simulated wind speed: 0.61, Root Mean Square Error between
PDFs: 0.073

3. Mean-reverting nature of the model → simulated wind speed starts at higher value than the
long-term mean but it reverts back to the mean daily cycle

5. Conclusion

� Proposed model fitted and validated with real data

� Proposed model adequately represents wind speed variations in continuous time

� Proposed model easily adjusted to other time resolution from that of the given data

� Proposed model can be used for various applications − optimal energy storage or system balancing

Future work:

�Different data sets → different daily cycles and examine their impact on the stochastic wind model

�Wind power curve → compute and analyse wind power output
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