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The present day challenges derive 
from a flood of data

Past A growingly complex system with clearly 
defined borders between layers
A hierarchical paradigm

Lack of data
Many models

Models derived from theories, theories derived 
from knowledge

Present A growingly complex system with 
generalized and distributed functions cross-
grid

A blended distributed paradigm
Excess of data
Few models

Knowledge derives from models, models 
derive from data
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Learning from real data becomes more 
important than ever 

There are multiple approaches to deal with data mining, but for physical systems 
the model learning approach is still the oldest and one of the most efficient.

Need to decide THREE things: 
the mapping function
the cost function, and 
the adaptive algorithm. 

Because of the complexity, architectures and representation also became important.  

Basically, three processes can be implemented to build a model from data:
• Supervised Learning, Reinforcement Learning and Unsupervised Learning
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Courtesy: J.Principe, CNEL
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Mapping Function - Feedforward Topology

 We keep using linear feedforward models, the finite impulse response (FIR) filter

 FIR filter, combinatorial model, no context/memory: static mapping.

 But optimization is linear in the weights

A classical performance criterion is MSE – but is it a good one ????
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Understanding the cost function under an information 
theoretic perspective

Information Filters: Given data pairs {x i,t i}
- Optimal Adaptive systems
- Information measures

The information is embedded in the 
weights of the adaptive system.

A learning process puts the real world in 
the adaptive system (as much as 

possible)

Output
y

Cost Function

Adaptive
System

Data x

Data t

Error t-y = 

f(x,w)

Adaptive 
Algorithm

INFORMATION
INPUT

Information
stored in the
weights

Information stored in the error 
distribution



6

A basic idea: the Dirac function has minimum entropy

The ideal case in model adjustment is when 
the pdf of errors  is a Dirac function - all 
errors equal.

With all errors equal, one could have perfect 
matching between output Y and target T, by 
adding a bias to the output neuron.

Minimizing the Entropy of the distribution of 
errors is a good idea.

Renyi’s quadratic entropy is an information 
measure that leads to convenient models 
that can be computed.
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Introducing Correntropy

The Correntropy function may measure how similar (probability) two random 
variables X and Y are – or how close to zero (0) the difference  = X-Y is.

The true joint distribution is usually unknown, so an estimate (via Parzen windows) may be 
obtained from a sample of size N

where G(.,σ2I) is a Gaussian kernel with variance σ2.

Maximizing Correntropy tends to the same result as minimizing Entropy 
while remaining at an average error of zero:

 Maximum Correntropy Criterion, or MCC
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Least Squares Regression (MSE – Minimum Square Error) 
is sensitive to large or gross errors

Assume that data is generated by a linear model f(x) corrupted by noise z(x) 
- a mixture of Gaussians, for example.

Outliers 

This is the regression 
line with Least Squares 

– influenced by the 
presence of outliers 

This is the model one 
would like to estimate -

f(x)

( ) ( ) ( ) 1 0.3 ( )=  =  g x f x z x x z x

𝑚𝑖𝑛෍

𝑘=1

𝑛

𝑔𝑘 − መ𝑓𝑘(𝑥)
2



9

Regression with outliers: the advantage of Correntropy

Assume that data is generated by a linear model f(x) corrupted by noise z(x) 
- a mixture of Gaussians, for example.

( ) ( ) ( ) 1 0.3 ( )=  =  g x f x z x x z x

Outliers 

This is the regression 
line with Least Squares 

– influenced by the 
presence of outliers 

Regression line with 
MCC and  = 0.5, 

ignoring the presence 
of outliers – very close 

to the original f(x)
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Advances in supervised learning derive from a new 
interpretation of the cost functions under the light 
of information theoretic concepts

Abandoning the pervasive minimum square error (MSE) criterion, which is an engineering 
construct, for criteria based on the information content of the pdf of errors. Examples of new cost 
functions:

MEE: Minimum Error Entropy        MCC: Maximum Correntropy Criterion

In wind power prediction (72 h ahead), predictors trained with INFORMATION measures lead to 
better results.

Why? Because forecasting the wind is a problem with non -Gaussian errors.
(joint work with J. Principe)

A B C

more errors close to 

zero w.r.t. MSE



ARGUS PRIMA – Prediction Intelligent Machine *

Illustration of uncertainty estimation with KDF (kernel density forecast):
stacked conditional probability density function plot for wind

power as a function of forecasted wind speed

* made available from ANL (USA) or through INESC TEC (Portugal)
http://www.anl.gov/technology/project/argus-prima-wind-power-prediction

INESC TEC software package made available:
• PostrgreSQL database
• NN library in C++, implementing several ITL criteria
• Kernel density forecast library in R
• Supporting codes in Python and R

http://www.anl.gov/
http://www.energy.gov/


Learning: an analogy to the visual cortex

We share Helmholtz’ 
view that cortical function 
evolved to explain 
sensory inputs. 

As such, we seek to 
understand the role of 
processing and stored 
experience in a machine 
learning framework for 
the decoding of sensory 
input.

(J Principe)



Cognitive architecture for object recognition in 
video

Goal   Develop a bidirectional, dynamical,  adaptive, self -
organizing, distributed and hierarchical model for sensory 
cortex processing using approximate Bayesian inference.

J Principe and R Chalasani, “Cognitive Architecture for Sensory 
Processing”, Proceedings of the IEEE, vol 102, #4, 514-525, 2014 



A multi-layered architecture is needed for proper learning

 Tree structure with tiling of 
scene at bottom

 Computational model is 
uniform within layer and 
across

 Different spatial scales due to pooling which also slows the time 
scale in upper layers

 Learning is greedy (one layer at a time)
 This creates a Markov chain across layers  

This reminds us of a first half of a deep autoencoder

Courtesy: J.Principe, CNEL



Learning macro features with half autoencoders

Experiments with deep sparse networks have shown that macro-features 
could be learned from data

From 10 million image frames 

collected randomly from youtube

videos, a half-autoencoder trained in 

unsupervised mode under an ICA 

criterion learned to identify macro-

features such as faces and cats!

[Quoc et al, 2012]



Macro features exist!

Faces… bodies… cats…
Is there a neuron that captures the
essential concept?

YES!

cat

body



OLA – Observatory of Latin America

PMU connected in low voltage: 
22 universities in Brazil
3 universities in Chile
1 university in Argentina
Data shipped to the Observatory in Florianópolis

Time-tagged information: like pixels in successive
frames in a film

The “film” captures the dynamics of the power
system

Can we discover invariants?
Can we build models from capturing knowledge,

instead of from a priori formulations?
This project (MedFasee) is on-going in Brazil.

http://www.medfasee.ufsc.br/temporeal/



The continuous monitoring of a power system may now 
benefit from learning instead of relying on static models

All data arriving at the SCADA in a Control Center can become time-tagged with 
synchrophasor technology.

It is like frames in a film!

time



Discriminability in Sequence Labeling

Honda/UCSD face data set (20 for training, 39 for testing) using Viola Jones face 
finding algorithm (on 20x20 patches). Histogram equalization is done. 2 layer model 
(16,48)1 (64,100)2, 5x5 filters, causes concatenated as features.

Convolutional Dynamic Models

If this can be done with images, why not with the power system?
Courtesy: J.Principe, CNEL
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Events in the Brazilian power system

Events collected at several PMUs 
simultaneously
Frequency data collected at the rate of 
1 measurement per 1/60 second

Examples of events stored in the time-
tagged database, in 20 seconds long 
patches (1200 measurements per PMU) 
– 1 second before and 19 seconds after:

Generator tripping
Line tripping
Load shedding
Oscillation
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Models tested: preliminary work (Decker)

Feedforward ANN, 1 hidden layer
Output layer: 2 neurons
Trained with classical backpropagation
Target output patterns:

Generator loss

Load disconnection

Only able to 100% reliably distinguish these two events, 
when fed with data related to multiple events

(configurations with 3, 4 outputs and for other types of events 
not successful)  

1200

20

2

1
0

0
1
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New models tested
Deeper feedforward ANN 

Deeper networks with 4 outputs (1 per event)

Two new architectures experimented:

3 hidden layers: 1200 – 500 – 200 – 100 – 4
5 hidden layers: 1200 – 500 – 200 – 100 – 50 – 10 – 4

0
0
1
0
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New models tested
Deep Belief Networks

Deeper networks with 4 outputs (1 per event)

A Deep Belief network is trained layer by layer, in 
unsupervised mode, until the last layer which is 
trained in a supervised fashion.

The intermediate unsupervised
training is supposed to organize
and structure information prior to
the identification exercise at the
outer layer

3 hidden layers: 1200 – 500 – 200 – 100 – 4

0
0
1
0

RBM RBM RBM
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New models tested
Convolution Neural Networks

Deeper networks with 4 outputs (1 per event)

CNNs mimic the neural structure of the visual 
cortex

Experiments:
frames 20 x 60 : 1200 – 400 – 4
frames 30 x 40 : 1200 – 500 – 4
inputs are treated as images!

0
0

1
0
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Events in the time domain

Generator tripping Load shedding

Line tripping Oscillation

perceived as images
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The analogy with the visual cortex is powerful

The convolutional neural networks, with an architecture inspired in the visual cortex, 
and with the input sequences organized as rectangular movie frames, were 100% 
successful in identifying the 4 events, from a pool of events presented to the 
network! 

These promising results in recognizing events are inspiring!

model error in event 
recognition

Deeper Feedforward ANN 1,5 %
Deep Belief Networks 1,5 %
Convolutional Neural Networks 30x40 0 %



Deep learning and knowledge discovery

A deep network projects a high dimension space S onto a space of reduced
dimension S’.

This compression, under a criterion to minimize 
information loss, keeps what is common among
data: the knowledge of macro-features.

Deep learning attempts to uncover knowledge
that is implicit yet hidden in data.

The secret is in blurring the details so that only common global features
emerge! 

S

S’



The new network will re-project data onto the original space! 

If such re-projection is trained in order to produce an output equal to the input 
vector (minimizing a function of the error), one gets an auto-associative neural 
network, or autoencoder.

From deep networks to autoencoders

What happens, when one attaches a deep network to an inverse net?



29

Identifying breaker status

Is it possible to guess, based on local measurements, 
the status of a breaker inserted in a network? 

CONJECTURE
The topology information is hidden (or is diluted) in the values of the electric 
variables.

So, distinct topology states must become somehow reflected in distinct shapes of the manifold 
supporting the electric data.

How to unveil such information?
Hint: the breaker status is a macro-feature.
A competitive autoencoder architecture may help discriminating.

AB

New 
point

min 
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Example: topology diagnosis for 
1 unknown breaker status

Only power, no voltage information.
Autoencoders trained in 10.000 cases with random 
load and generation.

The diagnosis system tested in 10.000 new cases.

TP FP FN TN
output 4919 0 14 5067

Remarkable!   Only 14 false negatives in 10,000!
Are they really wrong? Not exactly.

True Positive:   br. closed, prediction: closed
False Positive:   br. open,   prediction: closed
False Negative: br. closed, prediction: open
True Negative: br. open,   prediction: open
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Identifying breaker status

A deep belief network
18 – 14 – 10 – 6 – 4 – 2

Training implemented in a GPU 
with clear acceleration  

0
1

True Closed States 1230

False Closed States 0

True Open States 1115

False Open States 1

Total Accuracy 99,96 %

Closed State Accuracy 99,92 %

Open State Accuracy 100 %

Test in 2346 cases



Repaired measurement vectors
are communicated 
upstream.

A mosaic of autoencoders is defined.
Local filtering (detection and identification) 
is performed by Local Agents using ODAE

ODAE – Denoising Autoencoder + 
Optimized Input by EPSO.

A hyerarchical hybrid model will work fine! 

An ITSE procedure polishes up
the received repaired measurements
and produces a globally coherent SE
(that can be communicated downstream)

Local 
areas

~

Control
center
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Hybrid MCC estimator performance

Tests in 10.000 cases with larger and larger networks confirm the excellent 
performance of the new method: the 2-level hybrid ODAE + ITSE architecture.

method Efficiency
w/ 2 GE

Mean
time [𝒔]
w/ 2 GE

Mean
time [𝒔]
w/o GE

WLS - 0.1261 0.1239
LNRT 92.17% 0.5088 0.1652
ODAE 100.00% 1.3048 0.2071

WLS - 0.7219
LNRT 91.00% 2.8221
ODAE 100.00% 3.9129

IEEE 24-bus system

IEEE 118-bus system



Towards OOPS! – the organically organized 
power system

The biologic metaphor is growingly appropriate: 
nested control systems and differenced missions 
at distinct hierarchical levels.



Cognitive architectures will be useful for power 
system monitoring

 A power system is a spatial temporal process with many degrees of freedom.

 We design it piece by piece but have no idea if the current operating point is optimal, how 
resilient it is, when it is going to fail, etc. 

 We simply overdesign it, keep it in steady state and plan the operation off line.

 The complexity of these large man made systems is created by the interactions among the 
parts – but when we analyze them we use the divide and conquer strategy that exactly throws 
away the interactions among the parts!

 The current data tsunami allows us to start thinking of building models that learn from data, 
have nested information exchange and control loops and match classical physical models with 
knowledge extracted from the real world – in the fashion of an organic system.
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